STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION ROY COOPER **ERIC BOYETTE** GOVERNOR SECRETARY September 23, 2021 MEMORANDUM TO: Preston Hunter, P.E. Division 2 Engineer ATTENTION: Jeff Cabaniss, P.E. Division Project Development Engineer FROM: David Hering, L.G., P.E. Assistant State Geotechnical Engineer - Eastern Region David Hering STATE PROJECT: BP2.R005.1 (SF-150057) FEDERAL PROJECT: N/A **CARTERET** COUNTY: **DESCRIPTION:** Bridge No. 57 on -L- (SR 1391) over Harlowe Canal SUBJECT: Structure Foundation Recommendations The Geotechnical Engineering Unit has completed the subsurface investigation and prepared the foundation design recommendations for the above structure and presents the following project data. Structure Inventory (5) pages \boxtimes Foundation Design Recommendation (3) pages X Design Scour Elevation Memo (1) page \boxtimes \boxtimes Geotechnical Foundation Table (1) page Please call Thein T. Zan, PE or James R. Batts, P.E. at (919) 662-4710 if there are any questions concerning this memorandum. Attachment GARNER, NC 27529 Website: www.ncdot.gov ### **FOUNDATION RECOMMENDATIONS** | PROJECT _ | BP2.R005.1 | DESCRIPTION: Bridge #57 on SR 1391 (Ball Farm Rd.) | |-----------|------------|--| | T.I.P. NO | SF-150057 | over Harlowe Canal | | COUNTY _ | CARTERET | <u> </u> | DESIGN TTZ 9/23/2021 CHECK J. R. B. DATE 7TZ 9/23/2021 9/23/2021 STATION <u>15+29.41 -L-</u> | BENT
NO. | STATION | FOUNDATION
TYPE | FACTORED
RESISTANCE | MISCELLANEOUS
DETAILS | |---------------|-------------------|---|------------------------|--| | END
BENT 1 | 14+83.28 ±
-L- | Cap on
HP12x53 Steel Piles
(With H-Pile Points) | 127 Tons/Pile | Bottom of Cap Elevation = 3.9 ft. ± Estimated Pile Length = 55 ft. ± Number of Piles = 5 (3 Vertical Piles + 2 Braced Piles) | | END
BENT 2 | 15+75.53 ±
-L- | Cap on
HP12x53 Steel Piles
(With H-Pile Points) | 127 Tons/Pile | Bottom of Cap Elevation = 4.0 ft. ± Estimated Pile Length = 55 ft. ± Number of Piles = 5 (3 Vertical Piles + 2 Braced Piles) | NOTES & COMMENTS (See Following Page) #### FOUNDATION NOTES ON PLAN: 1. FOR PILES, SEE PILES PROVISION AND SECTION 450 OF THE STANDARD SPECIFICATIONS. #### **COMMENTS** - 1. USE BRACED PILES AT BOTH END BENT NO. 1 AND END BENT NO. 2. - 2. USE TYPE II MODIFIED BRIDGE APPROACH FILLS (2018 ROADWAY STANDARD DRAWING 422.02) FOR BOTH END BENT NO. 1 AND END BENT NO. 2. - 3. 1.5:1 (H:V) BRIDGE END SLOPES WITH SLOPE PROTECTION ARE OK. - 4. NO WAITING PERIOD REQUIRED AT END BENT NO. 1 AND END BENT NO. 2 AFTER CONSTRUCTING THE END BENT FOUNDATIONS. - 5. DYNAMIC RESISTANCE FACTOR 0.75 IS USE WITH 2 PDA TESTINGS. Prepared by: Date: 9/23/2021 Checked by: Date: 9/23/2021 #### SUMMARY OF PILE INFORMATION/INSTALLATION (Blank entries indicate item is not applicable to structure) | End Bent/ | | | | | | Driven Piles | | | Predrilling for Piles* | | | Orilled-In Piles | | |---|--|--|---|--------------------------------------|---|---|---|---|---|---|--|--|---| | Bent No,
Pile(s) #-#
(e.g., "Bent 1,
Piles 1-5") | Factored
Resistance
per Pile
TONS | Pile Cut-Off
(Top of Pile)
Elevation
FT | Estimated
Pile Lenth
per Pile
FT | Scour
Critical
Elevation
FT | Min Pile
Tip (Tip
No Higher
Than) Elev
FT | Required
Driving
Resistance
(RDR)** per Pile
TONS | Total
Pile
Redrives
Quantity
EACH | Predrilling
Length
per Pile
Lin FT | Predrilling
Elevation
(Elev Not To
Predrill Below)
FT | Maximum
Predrilling
Dia
INCHES | Pile
Excavation
(Bottom of
Hole) Elev
FT | Pile Exc
Not In
Soil
per Pile
Lin FT | Pile Exc
In Soil
per Pile
Lin FT | | End Bent No. 1 | 127 | 4.90 | 55 | | | 170 | | | | | | | í | | End Bent No. 2 | 127 | 5.00 | 55 | | | 170 | | | | | | | ĺ | | | | | | | | | 5 | | | | | | ĺ | 1 | *Predrilling for Piles is required for end bents/bents with a predrilling length and at the Contractor's option for end bents/bents with predrilling information but no predrilling length. ** $RDR = \frac{Factored\ Resistance + Factored\ Downdrag\ Load + Factored\ Dead\ Load}{Downdrag\ Resistance\ Factor} + Nominal\ Downdrag\ Resistance + \frac{Nominal\ Scour\ Resistance}{Scour\ Resistance\ Factor}$ Nominal Scour Resistance #### PILE DESIGN INFORMATION (Blank entries indicate item is not applicable to structure) | End Bent/
Bent No,
Pile(s) #-#
(e.g., "Bent 1,
Piles 1-5") | Factored
Axial
Load
per Pile
TONS | Factored
Downdrag
Load
per Pile
TONS | Factored
Dead
Load*
per Pile
TONS | Dynamic
Resistance
Factor | Nominal
Downdrag
Resistance
per Pile
TONS | Nominal
Scour Resistance
per Pile
TONS | Scour
Resistance
Factor
(Default = 1.00) | |--|---|--|---|---------------------------------|---|---|---| | End Bent No. 1 | 127 | | | 0.75 | | | 1.00 | | End Bent No. 2 | 127 | | | 0.75 | | | 1.00 | | • | | | | | | | 1.00 | | • | | | | | | | 1.00 | | • | | | | | | | 1.00 | *Factored Dead Load is factored weight of pile above the ground line. #### NOTES: - 1. The Pile Foundation Tables are based on the bridge substructure design and foundation recommendations sealed by a North Carolina Professional Engineer (Thein Tun Zan, PE # 030943) on 09-23-2021. - 2. Total Pile Driving Equipment Setup quantity (not shown in Pile Foundation Tables) equals the number of driven piles, i.e., the number of piles with a Required Driving Resistance. #### SUMMARY OF PDA/PILE ORDER LENGTHS (Blank entries indicate item is not applicable to structure) | F | ile Driving Analyz | Pile Order L | engths | | | |----------------------|--|----------------------------------|---|-------------------------|--| | End Bent/
Bent No | PDA
Testing
Required?
YES or
MAYBE | PDA
Test Pile
Length
FT | Total
PDA
Testing
Quantity
EACH | End Bent/
Bent No(s) | Pile Order
Length
Basis*
EST or PDA | | End Bent No. 1 | YES | 60 | | | | | End Bent No. 2 | YES | 60 | | | | | | | | 2 | | | | | | | | | | | | | | | | | *EST = Pile order lengths from estimated pile lengths; PDA = Pile order lengths based on PDA testing. For groups of end bents/bents with pile order lengths based on PDA testing, the first end bent/bent no. listed for each group is the representative end bent/bent with the PDA. #### SUMMARY OF PILE ACCESSORIES (Blank entries indicate item is not applicable to structure) | End Bent/ | Din - Dil | s | | | | | |--|---|---|--|--------------------------------------|--|--| | Bent No, Pile(s) #-# (e.g., "Bent 1, Piles 1-5") | Pipe Pile Plates Required? YES or MAYBE MAYBE Pipe Pile Cutting Shoes Required? YES | | Pipe Pile
Conical
Points
Required?
YES | H-Pile
Points
Required?
YES | Steel
Pile Tips
Required?
YES | | | End Bent No. 1 | | | | YES | | | | End Bent No. 2 | | | | YES | | | | | | | | | | | | TOTAL QTY: | | | | 10 | | | PROJECT NO. <u>BP2.R005.1 (SF-150057)</u> CARTERET _COUNTY 15+29.41 -L-STATION: __ STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION PILE **FOUNDATION TABLES** SHEET NO. REVISIONS DOCUMENT NOT CONSIDERED FINAL UNLESS ALL TOTAL SHEETS SIGNATURES COMPLETED CONTENTS DRAWN BY HAND IN MICROSTATION SS4 USING OPENROADS DESIGNER REFERENCE FILES **CONTENTS** SHEET NO. **DESCRIPTION** SF-15005 TITLE SHEET REFERENCE R005 8 LEGEND (SOIL & ROCK) SITE PLAN PROFILE BORE LOGS STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION **DIVISION OF HIGHWAYS** GEOTECHNICAL ENGINEERING UNIT ### **STRUCTURE** SUBSURFACE INVESTIGATION COUNTY CARTERET PROJECT DESCRIPTION BRIDGE NO. 57 ON -L-(SR 1391) OVER HARLOWE CANAL AT STA. 15+29 STATE PROJECT REFERENCE NO. SF-150057 5 #### **CAUTION NOTICE** THE SUBSURFACE INFORMATION AND THE SUBSURFACE INVESTIGATION ON WHICH IT IS BASED WERE MADE FOR THE PURPOSE OF STUDY, PLANNING AND DESIGN, AND NOT FOR CONSTRUCTION OR PAY PURPOSES. THE VARIOUS FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA AVAILABLE MAY BE REVIEWED OR INSPECTED IN RALEIGH BY CONTACTING THE N. C. DEPARTMENT OF TRANSPORTATION, GEOTECHNICAL ENGINEERING UNIT AT (1919) 707-6850. THE SUBSURFACE PLANS AND REPORTS, FIELD BORING LOGS, ROCK CORES AND SOIL TEST DATA ARE NOT PART OF THE CONTRACT. GENERAL SOIL AND ROCK STRATA DESCRIPTIONS AND INDICATED BOUNDARIES ARE BASED ON A GEOTECHNICAL INTERPRETATION OF ALL AVAILABLE SUBSURFACE DATA AND MAY NOT NECESSARILY REFLECT THE ACTUAL SUBSURFACE CONDITIONS BETWEEN BORINGS OR BETWEEN SAMPLED STRATA WITHIN THE BOREHOLE. THE LABORATORY SAMPLE DATA AND THE IN SITU LIKEN-PLACE) TEST DATA CAN BE RELIED ON ONLY TO THE DEGREE OF RELIABILITY INHERENT IN THE STANDARD TEST METHOD. THE DESTREY DATA THE VIEW OF THE STANDARD TEST METHOD. THE SUBSURFACE INVESTIGATIONS ARE AS RECORDED AT THE TIME OF THE INVESTIGATION. THESE WATER LEVELS OR SOIL MOISTURE CONDITIONS MAY YARY CONSIDERABLY WITH TIME ACCORDING TO CLIMATIC CONDITIONS INCLUDING TEMPERATURES, PRECIPITATION AND WIND, AS WELL AS OTHER NON-CLIMATIC FACTORS, THE BIDDER OR CONTRACTOR IS CAUTIONED THAT DETAILS SHOWN ON THE SUBSURFACE PLANS ARE PRELIMINARY ONLY AND IN MANY CASES THE FINAL DESIGN DETAILS ARE DIFFERENT, FOR BIDDING AND CONSTRUCTION PURPOSES, REFER TO THE CONSTRUCTION PLANS AND DOCUMENTS FOR FINAL DESIGN INFORMATION ON THIS PROJECT. THE DEPARTMENT DIES NOT WARRANT OR GUARANTEE THE SUFFICIENCY OR ACCURACY OF THE INVESTIGATION MADE, NOR THE INTERPRETATIONS MADE, OR OPINION OF THE DEPARTMENT AS TO THE TYPE OF MATERIALS AND CONDITIONS TO BE ENCOUNTERED. THE BIDDER OR CONTRACTOR IS CAUTIONED TO MAKE SUCH INDEPENDENT SUBSURFACE INVESTIGATIONS AS HE DEEMS NECESSARY TO SATISFY HIMSELF AS TO CONDITIONS TO BE ENCOUNTERED ON THE PROJECT. THE CONTRACTOR SHALL HAVE NO CLAIM FOR ADDITIONAL COMPENSATION OF FOR ANY REASON RESULTING FROM THE ACTUAL CONDITIONS FOR THE THE SITE DIFFERING FROM THOSE INDICATED IN THE SUBSURFACE INFORMATION. - IES: THE INFORMATION CONTAINED HEREIN IS NOT IMPLIED OR GUARANTEED BY THE N.C. DEPARTMENT OF TRANSPORTATION AS ACCURATE NOR IS IT CONSIDERED PART OF THE PLANS, SPECIFICATIONS OR CONTRACT FOR THE PROJECT. BY HAVING REQUESTED THIS INFORMATION, THE CONTRACTOR SPECIFICALLY WAIVES ANY CLAIMS FOR INCREASED COMPENSATION OR EXTENSION OF TIME BASED ON DIFFERENCES BETWEEN THE CONDITIONS INDICATED HEREIN AND THE ACTUAL CONDITIONS AT THE PROJECT SITE. PERSONNEL S.N. ZIMARINO R.E. SMITH C.M. WALKER INVESTIGATED BY __T.C. BOTTOMS DATE AUGUST 2021 DRAWN BY _S.N. ZIMARINO **UNLESS ALL SIGNATURES COMPLETED** SF-150057 SHEET NO. # NORTH CAROLINA DEPARTMENT OF TRANSPORTATION DIVISION OF HIGHWAYS GEOTECHNICAL ENGINEERING UNIT ### SUBSURFACE INVESTIGATION SOIL AND ROCK LEGEND, TERMS, SYMBOLS, AND ABBREVIATIONS | SOIL DESCRIPTION | GRADATION | ROCK DESCRIPTION | TERMS AND DEFINITIONS | |--|--|---|---| | SOIL IS CONSIDERED UNCONSOLIDATED, SEMI-CONSOLIDATED, OR WEATHERED EARTH MATERIALS THAT CAN BE PENETRATED WITH A CONTINUOUS FLIGHT POWER AUGER AND YIELD LESS THAN 100 BLOWS PER FOOT | WELL GRADED - INDICATES A GOOD REPRESENTATION OF PARTICLE SIZES FROM FINE TO COARSE. | HARD ROCK IS NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT REFUSAL IF TESTED, AN INFERRED ROCK LINE INDICATES THE LEVEL AT WHICH NON-COASTAL PLAIN MATERIAL WOULD YIELD SPT REFUSAL. | ALLUVIUM (ALLUV.) - SOILS THAT HAVE BEEN TRANSPORTED BY WATER. | | ACCORDING TO THE STANDARD PENETRATION TEST (AASHTO T 206, ASTM DI586). SOIL CLASSIFICATION | <u>UNIFORMLY GRADED</u> - INDICATES THAT SOIL PARTICLES ARE ALL APPROXIMATELY THE SAME SIZE. <u>GAP-GRADED</u> - INDICATES A MIXTURE OF UNIFORM PARTICLE SIZES OF TWO OR MORE SIZES. | SPT REFUSAL IS PENETRATION BY A SPLIT SPOON SAMPLER EQUAL TO OR LESS THAN 0.1 FOOT PER 60 | AQUIFER - A WATER BEARING FORMATION OR STRATA. | | IS BASED ON THE AASHTO SYSTEM, BASIC DESCRIPTIONS GENERALLY INCLUDE THE FOLLOWING: CONSISTENCY, COLOR, TEXTURE, MOISTURE, AASHTO CLASSIFICATION, AND OTHER PERTINENT FACTORS SUCH | ANGULARITY OF GRAINS | BLOWS IN NON-COASTAL PLAIN MATERIAL, THE TRANSITION BETWEEN SOIL AND ROCK IS OFTEN REPRESENTED BY A ZONE OF WEATHERED ROCK. | ARENACEOUS - APPLIED TO ROCKS THAT HAVE BEEN DERIVED FROM SAND OR THAT CONTAIN SAND. | | AS MINERALOGICAL COMPOSITION, ANGULARITY, STRUCTURE, PLASTICITY, ETC. FOR EXAMPLE, | THE ANGULARITY OR ROUNDNESS OF SOIL GRAINS IS DESIGNATED BY THE TERMS: | ROCK MATERIALS ARE TYPICALLY DIVIDED AS FOLLOWS: | ARGILLACEOUS - APPLIED TO ALL ROCKS OR SUBSTANCES COMPOSED OF CLAY MINERALS, OR HAVING | | VERY STIFF, GRAY, SILTY CLAY, MOIST WITH INTERBEDDED FINE SAND LAYERS, HIGHLY PLASTIC, A-7-6 | ANGULAR, SUBANGULAR, SUBROUNDED, OR ROUNDED. | WEATHERED NON-COASTAL PLAIN MATERIAL THAT WOULD YIELD SPT N VALUES > | A NOTABLE PROPORTION OF CLAY IN THEIR COMPOSITION, SUCH AS SHALE, SLATE, ETC. | | SOIL LEGEND AND AASHTO CLASSIFICATION | MINERALOGICAL COMPOSITION | ROCK (WR) 100 BLOWS PER FOOT IF TESTED. | ARTESIAN - GROUND WATER THAT IS UNDER SUFFICIENT PRESSURE TO RISE ABOVE THE LEVEL AT WHICH IT IS ENCOUNTERED, BUT WHICH DOES NOT NECESSARILY RISE TO OR ABOVE THE GROUND | | GENERAL GRANULAR MATERIALS SILT-CLAY MATERIALS CLASS. (≤ 35% PASSING *200) (> 35% PASSING *200) ORGANIC MATERIALS | MINERAL NAMES SUCH AS QUARTZ, FELDSPAR, MICA, TALC, KAOLIN, ETC. | CRYSTALLINE ROCK (CR) FINE TO COARSE GRAIN IGNEOUS AND METAMORPHIC ROCK THAT WOULD YIELD SPT REFUSAL IF TESTED. ROCK TYPE INCLUDES GRANITE, | SURFACE. | | GROUP A-1 A-3 A-2 A-4 A-5 A-6 A-7 A-1, A-2 A-4, A-5 | ARE USED IN DESCRIPTIONS WHEN THEY ARE CONSIDERED OF SIGNIFICANCE. | J. J., UNCISS, GABBRO, SCHIST, ETC. | CALCAREOUS (CALC.) - SOILS THAT CONTAIN APPRECIABLE AMOUNTS OF CALCIUM CARBONATE. | | CLASS. A-1-6 A-1-6 A-2-4 A-2-5 A-2-6 A-2-7 A-7-5 A-7-6 A-3 A-6, A-7 | COMPRESSIBILITY | NON-CRYSTALLINE FINE TO COARSE GRAIN METAMORPHIC AND NON-COASTAL PLAIN SEDIMENTARY ROCK THAT WOULD YEILD SPT REFUSAL IF TESTED. | COLLUVIUM - ROCK FRAGMENTS MIXED WITH SOIL DEPOSITED BY GRAVITY ON SLOPE OR AT BOTTOM | | SYMBOL 0000000000 | SLIGHTLY COMPRESSIBLE LL < 31 MODERATELY COMPRESSIBLE LL = 31 - 50 | ROCK TYPE INCLUDES PHYLLITE, SLATE, SANDSTONE, ETC. COASTAL PLAIN COASTAL PLAIN SEDIMENTS CEMENTED INTO ROCK, BUT MAY NOT YIELD | OF SLOPE. | | 7. PASSING | HIGHLY COMPRESSIBLE LL > 50 | SEDIMENTARY ROCK SPT REFUSAL, ROCK TYPE INCLUDES LIMESTONE, SANDSTONE, CEMENTED | CORE RECOVERY (REC.) - TOTAL LENGTH OF ALL MATERIAL RECOVERED IN THE CORE BARREL DIVIDED BY TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. | | *10 50 MX GRANULAR SIL1- MUCK, | PERCENTAGE OF MATERIAL | (CP) SHELL BEDS, ETC. WEATHERING | DIKE - A TABULAR BODY OF IGNEOUS ROCK THAT CUTS ACROSS THE STRUCTURE OF ADJACENT | | *40 30 MX 50 MX 51 MN PEAT 200 15 MX 25 MX 10 MX 35 MX 35 MX 35 MX 36 MN 36 MN 36 MN 36 MN | GRANULAR SILT - CLAY ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL | | ROCKS OR CUTS MASSIVE ROCK. | | MATERIAL MATERIAL | ORGANIC MATERIAL SOILS SOILS OTHER MATERIAL TRACE OF ORGANIC MATTER 2 - 3% 3 - 5% TRACE 1 - 10% | FRESH ROCK FRESH, CRYSTALS BRIGHT, FEW JOINTS MAY SHOW SLIGHT STAINING. ROCK RINGS UNDER HAMMER IF CRYSTALLINE. | DIP - THE ANGLE AT WHICH A STRATUM OR ANY PLANAR FEATURE IS INCLINED FROM THE | | PASSING *40 SOILS WITH | LITTLE ORGANIC MATTER 3 - 5% 5 - 12% LITTLE 10 - 20% | VERY SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED, SOME JOINTS MAY SHOW THIN CLAY COATINGS IF OPEN, | HORIZONTAL. | | LL 40 MX 41 MN 50 MX 41 MN 50 MX 41 MN 50 MX 11 MN 11 MN 10 MX 10 MX 11 MN | MODERATELY ORGANIC 5 - 10% 12 - 20% SOME 20 - 35% HIGHLY ORGANIC > 10% > 20% HIGHLY 35% AND ABOVE | (V SLI.) CRYSTALS ON A BROKEN SPECIMEN FACE SHINE BRIGHTLY. ROCK RINGS UNDER HAMMER BLOWS IF | DIP DIRECTION (DIP AZIMUTH) - THE DIRECTION OR BEARING OF THE HORIZONTAL TRACE OF THE LINE OF DIP, MEASURED CLOCKWISE FROM NORTH. | | COOLED TRIDEY OR OF A MY DO MY 12 MY IS MY NO MY AMOUNTS OF ORGANIC | GROUND WATER | OF A CRYSTALLINE NATURE. | FAULT - A FRACTURE OR FRACTURE ZONE ALONG WHICH THERE HAS BEEN DISPLACEMENT OF THE | | ORCANIC SUILS | | SLIGHT ROCK GENERALLY FRESH, JOINTS STAINED AND DISCOLORATION EXTENDS INTO ROCK UP TO (SLI.) 1 INCH. OPEN JOINTS MAY CONTAIN CLAY. IN GRANITOID ROCKS SOME OCCASIONAL FELDSPAR | SIDES RELATIVE TO ONE ANOTHER PARALLEL TO THE FRACTURE. | | USUAL TYPES STONE FRAGS. OF MAJOR GRAVEL AND SAND SAND SOLIS SOLIS OF MAJOR GRAVEL AND SAND SOLIS SOLIS | WATER LEVEL IN BORE HOLE IMMEDIATELY AFTER DRILLING | CRYSTALS ARE DULL AND DISCOLORED. CRYSTALLINE ROCKS RING UNDER HAMMER BLOWS. | FISSILE - A PROPERTY OF SPLITTING ALONG CLOSELY SPACED PARALLEL PLANES. | | MATERIALS SAND GRAVEL AND SAND SOILS SOILS | ▼ STATIC WATER LEVEL AFTER <u>24</u> HOURS | MODERATE SIGNIFICANT PORTIONS OF ROCK SHOW DISCOLORATION AND WEATHERING EFFECTS. IN | FLOAT - ROCK FRAGMENTS ON SURFACE NEAR THEIR ORIGINAL POSITION AND DISLODGED FROM | | GEN. RATING EXCELLENT TO GOOD FAIR TO POOR POOR UNSUITABLE | | (MOD.) GRANITOID ROCKS, MOST FELDSPARS ARE DULL AND DISCOLORED, SOME SHOW CLAY. ROCK HAS DULL SOUND UNDER HAMMER BLOWS AND SHOWS SIGNIFICANT LOSS OF STRENGTH AS COMPARED | PARENT MATERIAL. | | AS SUBGRADE POUR | SPRING OR SEEP | WITH FRESH ROCK. | FLOOD PLAIN (FP) - LAND BORDERING A STREAM, BUILT OF SEDIMENTS DEPOSITED BY THE STREAM. | | PI OF A-7-5 SUBGROUP IS ≤ LL - 30 ; PI OF A-7-6 SUBGROUP IS > LL - 30 CONSISTENCY OR DENSENESS | MISCELLANEOUS SYMBOLS | MODERATELY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. IN GRANITOID ROCKS, ALL FELDSPARS DULL SEVERE AND DISCOLORED AND A MAJORITY SHOW KAOLINIZATION, ROCK SHOWS SEVERE LOSS OF STRENGTH | FORMATION (FM.) - A MAPPABLE GEOLOGIC UNIT THAT CAN BE RECOGNIZED AND TRACED IN THE FIELD. | | PANCE OF STANDARD PANCE OF LINCONFINED | MISCELLHINEUUS SIMBULS | (MOD. SEV.) AND CAN BE EXCAVATED WITH A GEOLOGIST'S PICK. ROCK GIVES "CLUNK" SOUND WHEN STRUCK. | JOINT - FRACTURE IN ROCK ALONG WHICH NO APPRECIABLE MOVEMENT HAS OCCURRED. | | PRIMARY SOIL TYPE COMPACTINESS OR PENETRATION RESISTENCE COMPRESSIVE STRENGTH | ROADWAY EMBANKMENT (RE) 25/025 DIP & DIP DIRECTION | <u>IF TESTED, WOULD YIELD SPT REFUSAL</u> | LEDGE - A SHELF-LIKE RIDGE OR PROJECTION OF ROCK WHOSE THICKNESS IS SMALL COMPARED TO | | (N-VALUE) (TUNS/FT-) | WITH SOIL DESCRIPTION OF ROCK STRUCTURES | SEVERE ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED, ROCK FABRIC CLEAR AND EVIDENT BUT (SEV.) REDUCED IN STRENGTH TO STRONG SOIL. IN GRANITOID ROCKS ALL FELDSPARS ARE KAOLINIZED | ITS LATERAL EXTENT. | | GENERALLY VERY LOOSE 4 TO 10 | SOIL SYMBOL Opt omt test boring SLOPE INDICATOR INSTALLATION | TO SOME EXTENT. SOME FRAGMENTS OF STRONG ROCK USUALLY REMAIN. | LENS - A BODY OF SOIL OR ROCK THAT THINS OUT IN ONE OR MORE DIRECTIONS. | | MATERIAL MEDIUM DENSE 10 TO 30 N/A | ARTIFICIAL FILL (AF) OTHER AUGER BORING CONE PENETROMETER | IF TESTED, WOULD YIELD SPT N VALUES > 100 BPF | MOTTLED (MOT.) - IRREGULARLY MARKED WITH SPOTS OF DIFFERENT COLORS. MOTTLING IN SOILS USUALLY INDICATES POOR AERATION AND LACK OF GOOD DRAINAGE. | | (NON-COHESIVE) DENSE 30 TO 50 VERY DENSE > 50 | THAN ROADWAY EMBANKMENT AUGER BORING CONE PENETROMETER | VERY ALL ROCK EXCEPT QUARTZ DISCOLORED OR STAINED. ROCK FABRIC ELEMENTS ARE DISCERNIBLE SEVERE BUT MASS IS EFFECTIVELY REDUCED TO SOIL STATUS, WITH ONLY FRAGMENTS OF STRONG ROCK | PERCHED WATER - WATER MAINTAINED ABOVE THE NORMAL GROUND WATER LEVEL BY THE PRESENCE | | VERY SOFT | ──── INFERRED SOIL BOUNDARY - CORE BORING SOUNDING ROD | (V SEV.) REMAINING. SAPROLITE IS AN EXAMPLE OF ROCK WEATHERED TO A DEGREE THAT ONLY MINOR | OF AN INTERVENING IMPERVIOUS STRATUM. | | GENERALLY SOFT 2 TO 4 0.25 TO 0.5 | TEST BORING | VESTIGES OF ORIGINAL ROCK FABRIC REMAIN. <u>IF TESTED, WOULD YIELD SPT N VALUES < 100 BPF</u> | RESIDUAL (RES.) SOIL - SOIL FORMED IN PLACE BY THE WEATHERING OF ROCK. | | SILT-CLAY MEDIUM STIFF 4 TO 8 0.5 TO 1.0 MATERIAL STIFF 8 TO 15 1 TO 2 | INFERRED ROCK LINE MONITORING WELL WITH CORE | COMPLETE ROCK REDUCED TO SOIL. ROCK FABRIC NOT DISCERNIBLE, OR DISCERNIBLE ONLY IN SMALL AND SCATTERED CONCENTRATIONS. QUARTZ MAY BE PRESENT AS DIKES OR STRINGERS. SAPROLITE IS | ROCK QUALITY DESIGNATION (RQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL LENGTH OF | | (COHESIVE) VERY STIFF 15 TO 30 2 TO 4 | → → → → → → → ALLUVIAL SOIL BOUNDARY \(\triangle \) PIEZOMETER INSTALLATION \(\triangle \) SPT N-VALUE | ALSO AN EXAMPLE. | ROCK SEGMENTS EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY THE TOTAL LENGTH OF CORE RUN AND EXPRESSED AS A PERCENTAGE. | | HARD > 30 > 4 | | ROCK HARDNESS | SAPROLITE (SAP.) - RESIDUAL SOIL THAT RETAINS THE RELIC STRUCTURE OR FABRIC OF THE PARENT | | TEXTURE OR GRAIN SIZE | RECOMMENDATION SYMBOLS | VERY HARD CANNOT BE SCRATCHED BY KNIFE OR SHARP PICK. BREAKING OF HAND SPECIMENS REQUIRES | ROCK. | | U.S. STD. SIEVE SIZE 4 10 40 60 200 270 OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 | UNDERCUT UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - UNCLASSIFIED EXCAVATION - ACCEPTABLE, BUT NOT TO BE | SEVERAL HARD BLOWS OF THE GEOLOGIST'S PICK. | SILL - AN INTRUSIVE BODY OF IGNEOUS ROCK OF APPROXIMATELY UNIFORM THICKNESS AND | | OPENING (MM) 4.76 2.00 0.42 0.25 0.075 0.053 | SHALLOW UNCLASSIFIED EXCAVATION - USED IN THE TOP 3 FEET OF | HARD CAN BE SCRATCHED BY KNIFE OR PICK ONLY WITH DIFFICULTY. HARD HAMMER BLOWS REQUIRED TO DETACH HAND SPECIMEN. | RELATIVELY THIN COMPARED WITH ITS LATERAL EXTENT, THAT HAS BEEN EMPLACED PARALLEL TO THE BEDDING OR SCHISTOSITY OF THE INTRUDED ROCKS. | | BOULDER COBBLE GRAVEL SAND SAND SILT CLAY | UNDERCUT ACCEPTABLE DEGRADABLE ROCK EMBANKMENT OF BACKFILL | MODERATELY CAN BE SCRATCHED BY KNIFE OR PICK, GOUGES OR GROOVES TO 0.25 INCHES DEEP CAN BE | SLICKENSIDE - POLISHED AND STRIATED SURFACE THAT RESULTS FROM FRICTION ALONG A FAULT | | (BLDR.) (COB.) (GR.) (CSE. SD.) (F SD.) (SL.) (CL.) | ABBREVIATIONS | HARD EXCAVATED BY HARD BLOW OF A GEOLOGIST'S PICK. HAND SPECIMENS CAN BE DETACHED | OR SLIP PLANE. | | GRAIN MM 305 75 2.0 0.25 0.05 0.005 | AR - AUGER REFUSAL MED MEDIUM VST - VANE SHEAR TEST | BY MODERATE BLOWS. | STANDARD PENETRATION TEST (PENETRATION RESISTANCE) (SPT) - NUMBER OF BLOWS (N OR BPF) OF | | SIZE IN. 12 3 | BT - BORING TERMINATED MICA MICACEOUS WEA WEATHERED CL CLAY MOD MODERATELY 7 - UNIT WEIGHT | MEDIUM CAN BE GROOVED OR GOUGED 0.05 INCHES DEEP BY FIRM PRESSURE OF KNIFE OR PICK POINT. HARD CAN BE EXCAVATED IN SMALL CHIPS TO PEICES 1 INCH MAXIMUM SIZE BY HARD BLOWS OF THE | A 140 LB.HAMMER FALLING 30 INCHES REQUIRED TO PRODUCE A PENETRATION OF 1 FOOT INTO SOIL
WITH A 2 INCH OUTSIDE DIAMETER SPLIT SPOON SAMPLER. SPT REFUSAL IS PENETRATION EQUAL | | SOIL MOISTURE - CORRELATION OF TERMS | CPT - CONE PENETRATION TEST NP - NON PLASTIC $\gamma_{\sf d}$ - DRY UNIT WEIGHT | POINT OF A GEOLOGIST'S PICK. | TO OR LESS THAN 0.1 FOOT PER 60 BLOWS. | | SOIL MOISTURE SCALE FIELD MOISTURE GUIDE FOR FIELD MOISTURE DESCRIPTION (ATTERBERG LIMITS) DESCRIPTION | CSE COARSE ORG ORGANIC DMT - DILATOMETER TEST PMT - PRESSUREMETER TEST SAMPLE ABBREVIATIONS | SOFT CAN BE GROVED OR GOUGED READILY BY KNIFE OR PICK. CAN BE EXCAVATED IN FRAGMENTS | STRATA CORE RECOVERY (SREC.) - TOTAL LENGTH OF STRATA MATERIAL RECOVERED DIVIDED BY TOTAL LENGTH OF STRATUM AND EXPRESSED AS A PERCENTAGE. | | | DPT - DYNAMIC PENETRATION TEST SAP SAPROLITIC S - BULK | FROM CHIPS TO SEVERAL INCHES IN SIZE BY MODERATE BLOWS OF A PICK POINT. SMALL, THIN PIECES CAN BE BROKEN BY FINGER PRESSURE. | STRATA ROCK QUALITY DESIGNATION (SRQD) - A MEASURE OF ROCK QUALITY DESCRIBED BY TOTAL | | - SATURATED - USUALLY LIQUID; VERY WET, USUALLY (SAT.) FROM BELOW THE GROUND WATER TABLE | e - VOID RATIO SD SAND, SANDY SS - SPLIT SPOON F - FINE SL SILT, SILTY ST - SHELBY TUBE | VERY CAN BE CARVED WITH KNIFE. CAN BE EXCAVATED READILY WITH POINT OF PICK. PIECES 1 INCH | LENGTH OF ROCK SEGMENTS WITHIN A STRATUM EQUAL TO OR GREATER THAN 4 INCHES DIVIDED BY | | LL _ LIQUID LIMIT | F - FINE SL SILT, SILTY ST - SHELBY TUBE FOSS FOSSILIFEROUS SLI SLIGHTLY RS - ROCK | SOFT OR MORE IN THICKNESS CAN BE BROKEN BY FINGER PRESSURE. CAN BE SCRATCHED READILY BY | THE TOTAL LENGTH OF STRATA AND EXPRESSED AS A PERCENTAGE. | | PLASTIC SEMISOLID; REQUIRES DRYING TO | FRAC FRACTURED, FRACTURES TCR - TRICONE REFUSAL RT - RECOMPACTED TRIAXIAL | FINGERNAIL. | TOPSOIL (TS.) - SURFACE SOILS USUALLY CONTAINING ORGANIC MATTER. | | (PI) PL PLASTIC LIMITATTAIN OPTIMUM MOISTURE | FRAGS FRAGMENTS | FRACTURE SPACING BEDDING TERM SPACING TERM THICKNESS | BENCH MARK: BL-2 | | | EQUIPMENT USED ON SUBJECT PROJECT | VERY WIDE MORE THAN 10 FEET VERY THICKLY BEDDED 4 FEET | N: 403100.4850
E: 2675410.2620 ELEVATION: 9.36 FEET | | OM OPTIMUM MOISTURE - MOIST - (M) SOLID; AT OR NEAR OPTIMUM MOISTURE | DRILL UNITS: ADVANCING TOOLS: HAMMER TYPE: | WIDE 3 TO 10 FEET THICKLY BEDDED 1.5 - 4 FEET MODERATELY CLOSE 1 TO 3 FEET THINLY BEDDED 0.16 - 1.5 FEET | | | SL SHRINKAGE LIMIT | X CME-45C CLAY BITS X AUTOMATIC MANUAL | CLOSE Ø.16 TO 1 FOOT VERY THINLY BEDDED Ø.03 - Ø.16 FEET | NOTES: | | - DRY - (D) REQUIRES ADDITIONAL WATER TO ATTAIN OPTIMUM MOISTURE | 6' CONTINUOUS ELIGHT AUGER | VERY CLOSE LESS THAN 0.16 FEET THICKLY LAMINATED 0.008 - 0.03 FEET THINLY LAMINATED < 0.008 FEET | FIAD: FILLED IMMEDIATELY AFTER DRILLING | | | CME-55 = CONE 5122. | INDURATION (0.008 FEET | | | PLASTICITY | | FOR SEDIMENTARY ROCKS, INDURATION IS THE HARDENING OF MATERIAL BY CEMENTING, HEAT, PRESSURE, ETC. | | | PLASTICITY INDEX (PI) DRY STRENGTH NON PLASTIC 0-5 VERY LOW | | RUBRING WITH FINGER EREES NUMEROUS CRAINS. | | | NON PLASTIC 0-5 VERY LOW SLIGHTLY PLASTIC 6-15 SLIGHT | VANE SHEAR TEST TUNGCARBIDE INSERTS HAND TOOLS: | FRIABLE GENTLE BLOW BY HAMMER DISINTEGRATES SAMPLE. | | | MODERATELY PLASTIC 16-25 MEDIUM | X CASING W/ ADVANCER POST HOLE DIGGER | MODERATELY INDURATED GRAINS CAN BE SEPARATED FROM SAMPLE WITH STEEL PROBE; | | | HIGHLY PLASTIC 26 OR MORE HIGH | PORTABLE HOIST X TRICONE 2 15/6 STEEL TEETH HAND AUGER | BREAKS EASILY WHEN HIT WITH HAMMER. | | | COLOR | TRICONE TUNGCARB. SOUNDING ROD | INDURATED GRAINS ARE DIFFICULT TO SEPARATE WITH STEEL PROBE; DIFFICULT TO BREAK WITH HAMMER, | | | DESCRIPTIONS MAY INCLUDE COLOR OR COLOR COMBINATIONS (TAN, RED, YELLOW-BROWN, BLUE-GRAY). | CORE BIT VANE SHEAR TEST | | | | MODIFIERS SUCH AS LIGHT, DARK, STREAKED, ETC. ARE USED TO DESCRIBE APPEARANCE. | | EXTREMELY INDURATED SHARP HAMMER BLOWS REQUIRED TO BREAK SAMPLE; SAMPLE BREAKS ACROSS GRAINS. | DATE: 8-15-14 | | | | | | ### GEOTECHNICAL BORING REPORT BORE LOG ## STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION ROY COOPER GOVERNOR ERIC BOYETTE SECRETARY August 11, 2021 Memorandum to: Kristy Alford, P.E. Structures Management Unit Stephen Morgan, P.E. Hydraulics Design Unit Project: BP2.R005.1 (SF-150057) F.A. Project: N/A County: Carteret Description: Bridge No. 57 on -L- (SR 1391) over Harlowe Canal Subject: Design Scour Elevation After a review of site flooding history, historical scour depth, and geologic conditions encountered at the site, the Geotechnical Engineering Unit has determined the design scour elevation(s) (DSE), and presents the following: | Location | 100 yr. Theoretical Scour Elevation | Historical Scour
Elevation | Design Scour
Elevation | Does DSE impact end bents? | |----------------|-------------------------------------|-------------------------------|---------------------------|----------------------------| | CHANNEL
BED | -6.0 feet | -5.5 feet | -6.0 feet | No | The 100 yr. Theoretical Scour Elevation is from the Bridge Survey and Hydraulic Design Report dated 05/6/21. The manmade nature of the canal suggests poorly developed conditions for alluvial deposition. The subsurface investigation at the site revealed Undivided Coastal Plain soils beginning at elevation 7.4 feet. The Undivided Coastal Plain soils consist of very soft to stiff silty clay and loose to very dense sand. The Undivided Coastal Plain soils in the scour envelope indicate a low resistance to scour. The Design Scour Elevation is the same as the Theoretical Scour Elevation. Telephone: (919) 662-4710 Customer Service: 1-877-368-4968